z-logo
open-access-imgOpen Access
Some Characteristics of Model-Predicted Precipitation during the Summer Monsoon over India
Author(s) -
B. K. Basu
Publication year - 2005
Publication title -
journal of applied meteorology
Language(s) - English
Resource type - Journals
eISSN - 1520-0450
pISSN - 0894-8763
DOI - 10.1175/jam-2198.1
Subject(s) - precipitation , climatology , environmental science , monsoon , rain gauge , wet season , quantitative precipitation forecast , range (aeronautics) , atmospheric sciences , meteorology , geography , geology , materials science , cartography , composite material
For the summer monsoon seasons of 1995, 1996, and 1997 the day-1 to day-4 forecasts of precipitation from both the National Centre for Medium Range Weather Forecasting (NCMRWF) and the European Centre for Medium-Range Forecasts (ECMWF) models reproduce the main features of the observed precipitation pattern when averaged over the whole season. On average, less than 30% of all rain gauge stations in India report rain on a given day during the monsoon season. The number of observed rainy days increases to 41% after spatial averaging over ECMWF model grid boxes and to 50% after spatial averaging over NCMRWF model grid boxes. The NCMRWF model forecasts have 10%–15% more rainy days, mostly in the light or moderate precipitation categories, when compared with the spatial average of observed values. Seasonal accumulated values of all of India’s average precipitation show a slight increase with the forecast lead time for the NCMRWF model and a small decrease for the ECMWF model. The weekly accumulated values of forecast precipitation from both models, averaged over the whole of India, are in good phase relationship (∼0.9 in most cases) with the observed value for forecasts with a lead time up to day 4. Values of statistical parameters, based on the frequency of occurrence in various classes, indicate that the NCMRWF model has some skill in predicting precipitation over India during the summer monsoon. The NCMRWF model forecasts have higher trend correlation with the observed precipitation over India than do the ECMWF model forecasts. The mean error in precipitation is, however, much less in the ECMWF model forecasts, and the spatial distribution of seasonal average medium-range forecasts of ECMWF is closer to that observed along the west coast mountain ridgeline.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here