z-logo
open-access-imgOpen Access
Effects of Waves on Tabular Ice-Shelf Calving
Author(s) -
Diandong Ren,
Lance M. Leslie
Publication year - 2014
Publication title -
earth interactions
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.309
H-Index - 38
ISSN - 1087-3562
DOI - 10.1175/ei-d-14-0005.1
Subject(s) - geology , iceberg , sea ice , ice shelf , fast ice , ice stream , drift ice , shoaling and schooling , oceanography , arctic ice pack , climatology , cryosphere
As a conveyor belt transferring inland ice to ocean, ice shelves shed mass through large, systematic tabular calving, which also plays a major role in the fluctuation of the buttressing forces. Tabular iceberg calving involves two stages: first is systematic cracking, which develops after the forward-slanting front reaches a limiting extension length determined by gravity–buoyancy imbalance; second is fatigue separation. The latter has greater variability, producing calving irregularity. Whereas ice flow vertical shear determines the timing of the systematic cracking, wave actions are decisive for ensuing viscoplastic fatigue. Because the frontal section has its own resonance frequency, it reverberates only to waves of similar frequency. With a flow-dependent, nonlocal attrition scheme, the present ice model [Scalable Extensible Geoflow Model for Environmental Research-Ice flow submodel (SEGMENT-Ice)] describes an entire ice-shelf life cycle. It is found that most East Antarctic ice shelves have higher resonance frequencies, and the fatigue of viscoplastic ice is significantly enhanced by shoaling waves from both storm surges and infragravity waves (~5 × 10−3 Hz). The two largest embayed ice shelves have resonance frequencies within the range of tsunami waves. When approaching critical extension lengths, perturbations from about four consecutive tsunami events can cause complete separation of tabular icebergs from shelves. For shelves with resonance frequencies matching storm surge waves, future reduction of sea ice may impose much larger deflections from shoaling, storm-generated ocean waves. Although the Ross Ice Shelf (RIS) total mass varies little in the twenty-first century, the mass turnover quickens and the ice conveyor belt is ~40% more efficient by the late twenty-first century, reaching 70 km3 yr−1. The mass distribution shifts oceanward, favoring future tabular calving.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here