
A Mechanism of the MJO Invoking Scale Interactions
Author(s) -
T. N. Krishnamurti,
Ruby Krishnamurti,
Anu Simon,
Aype Thomas,
Vinay Kumar
Publication year - 2016
Publication title -
meteorological monographs
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.32
H-Index - 3
eISSN - 1943-3646
pISSN - 0065-9401
DOI - 10.1175/amsmonographs-d-15-0009.1
Subject(s) - madden–julian oscillation , convection , climatology , meteorology , environmental science , geology , physics
This chapter distinguishes the mechanism of tropical convective disturbances, such as a hurricane, from that of the Madden–Julian oscillation (MJO). The hurricane is maintained by organized convection around the azimuth. In a hurricane the organization of convection, the generation of eddy available potential energy, and the transformation of eddy available potential energy into eddy kinetic energy all occur on the scale of the hurricane and these are called “in-scale processes,” which invoke quadratic nonlinearity. The MJO is not a hurricane type of disturbance; organized convection simply does not drive an MJO in the same manner. The maintenance of the MJO is more akin to a multibody problem where the convection is indeed organized on scales of tropical synoptic disturbances that carry a similar organization of convection and carry similar roles for the generation of eddy available potential energy and its conversion to the eddy kinetic energy for their maintenance. The maintenance of the MJO is a scale interaction problem that comes next, where pairs of synoptic-scale disturbances are shown to interact with a member of the MJO time scale, thus contributing to its maintenance. This chapter illustrates the organization of convection, synoptic-scale energetics, and nonlinear scale interactions to show the above aspects for the mechanism of the MJO.