z-logo
open-access-imgOpen Access
An Autonomous Open-Ocean Stereoscopic PIV Profiler
Author(s) -
Jonah V. Steinbuck,
Paul L. D. Roberts,
Cary D. Troy,
Alexander R. HornerDevine,
Fernando Simonet,
Alfred H. Uhlman,
Jules S. Jaffe,
Stephen G. Monismith,
Peter J. S. Franks
Publication year - 2010
Publication title -
journal of atmospheric and oceanic technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.774
H-Index - 124
eISSN - 1520-0426
pISSN - 0739-0572
DOI - 10.1175/2010jtecho694.1
Subject(s) - acoustic doppler current profiler , particle image velocimetry , microscale chemistry , turbulence , turbulence kinetic energy , stereoscopy , geology , remote sensing , doppler effect , physics , optics , meteorology , mathematics education , mathematics , astronomy
Over the past decade, a novel free-fall imaging profiler has been under development at the Scripps Institution of Oceanography to observe and quantify biological and physical structure in the upper 100 m of the ocean. The profiler provided the first detailed view of microscale phytoplankton distributions using in situ planar laser-induced fluorescence. The present study examines a recent incarnation of the profiler that features microscale turbulent flow measurement capabilities using stereoscopic particle image velocimetry (PIV). As the profiler descends through the water column, a vertical sheet of laser light illuminates natural particles below the profiler. Two sensitive charge-coupled device (CCD) cameras image a 25 cm × 25 cm × 0.6 cm region at a nominal frame rate of 8 Hz. The stereoscopic camera configuration allows all three components of velocity to be measured in the vertical plane with an average spatial resolution of approximately 3 mm. The performance of the PIV system is evaluated for deployments offshore of the southern California coast. The in situ image characteristics, including natural particle seeding density and imaged particle size, are found to be suitable for PIV. Ensemble-averaged velocity and dissipation of turbulent kinetic energy estimates from the stereoscopic PIV system are consistent with observations from an acoustic Doppler velocimeter and acoustic Doppler current profiler, though it is revealed that the present instrument configuration influences the observed flow field. The salient challenges in adapting stereoscopic PIV for in situ, open-ocean turbulence measurements are identified, including cross-plane particle motion, instrument intrusiveness, and measurement uncertainty limitations. These challenges are discussed and recommendations are provided for future development: improved alignment with the dominant flow direction, mitigation of instrument intrusiveness, and improvements in illumination and imaging resolution.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here