z-logo
open-access-imgOpen Access
Drought Indices Based on the Climate Forecast System Reanalysis and Ensemble NLDAS
Author(s) -
Kingtse C. Mo,
Lindsey N. Long,
Youlong Xia,
Song Yang,
Jae E. Schemm,
Michael Ek
Publication year - 2011
Publication title -
journal of hydrometeorology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.733
H-Index - 123
eISSN - 1525-755X
pISSN - 1525-7541
DOI - 10.1175/2010jhm1310.1
Subject(s) - climate forecast system , environmental science , climatology , precipitation , evapotranspiration , streamflow , data assimilation , surface runoff , percentile , hydrology (agriculture) , drainage basin , meteorology , geography , geology , ecology , statistics , cartography , mathematics , geotechnical engineering , biology
Drought indices derived from the Climate Forecast System Reanalysis (CFSR) are compared with indices derived from the ensemble North American Land Data Assimilation System (NLDAS) and the North American Regional Reanalysis (NARR) over the United States. Uncertainties in soil moisture, runoff, and evapotranspiration (E) from three systems are assessed by comparing them with limited observations, including E from the AmeriFlux data, soil moisture from the Oklahoma Mesonet and the Illinois State Water Survey, and streamflow data from the U.S. Geological Survey (USGS). The CFSR has positive precipitation (P) biases over the western mountains, the Pacific Northwest, and the Ohio River valley in winter and spring. In summer, it has positive biases over the Southeast and large negative biases over the Great Plains. These errors limit the ability to use the standardized precipitation indices (SPIs) derived from the CFSR to measure the severity of meteorological droughts. To compare with the P analyses, the Heidke score for the 6-month SPI derived from the CFSR is on average about 0.5 for the three-category classification of drought, floods, and neutral months. The CFSR has positive E biases in spring because of positive biases in downward solar radiation and high potential evaporation. The negative E biases over the Great Plains in summer are due to less P and soil moisture in the root zone. The correlations of soil moisture percentile between the CFSR and the ensemble NLDAS are regionally dependent. The correlations are higher over the area east of 100°W and the West Coast. There is less agreement between them over the western interior region.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here