
Real-Time Bias Reduction for Satellite-Based Precipitation Estimates
Author(s) -
Yudong Tian,
Christa D. PetersLidard,
John Eylander
Publication year - 2010
Publication title -
journal of hydrometeorology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.733
H-Index - 123
eISSN - 1525-755X
pISSN - 1525-7541
DOI - 10.1175/2010jhm1246.1
Subject(s) - satellite , environmental science , precipitation , rain gauge , meteorology , global precipitation measurement , gauge (firearms) , climatology , remote sensing , computer science , geography , geology , archaeology , aerospace engineering , engineering
A new approach to reduce biases in satellite-based estimates in real time is proposed and tested in this study. Currently satellite-based precipitation estimates exhibit considerable biases, and there have been many efforts to reduce these biases by merging surface gauge measurements with satellite-based estimates. Most of these efforts require timely availability of surface gauge measurements. The new proposed approach does not require gauge measurements in real time. Instead, the Bayesian logic is used to establish a statistical relationship between satellite estimates and gauge measurements from recent historical data. Then this relationship is applied to real-time satellite estimates when gauge data are not yet available. This new scheme is tested over the United States with six years of precipitation estimates from two real-time satellite products [i.e., the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) research product 3B42RT and the NOAA Climate Prediction Center (CPC) Morphing technique (CMORPH)] and a gauge analysis dataset [i.e., the CPC unified analysis]. The first 4-yr period was used as the training period to establish a satellite–gauge relationship, which was then applied to the last 2 yr as the correction period, during which gauge data were withheld for training but only used for evaluation. This approach showed that satellite biases were reduced by 70%–100% for the summers in the correction period. In addition, even when sparse networks with only 600 or 300 gauges were used during the training period, the biases were still reduced by 60%–80% and 47%–63%, respectively. The results also show a limitation in this approach as it tends to overadjust both light and strong events toward more intermediate rain rates.