Open Access
The Hydrology and Hydrometeorology of Flooding in the Delaware River Basin
Author(s) -
James A. Smith,
Mary Lynn Baeck,
Gabriele Villarini,
Witold F. Krajewski
Publication year - 2010
Publication title -
journal of hydrometeorology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.733
H-Index - 123
eISSN - 1525-755X
pISSN - 1525-7541
DOI - 10.1175/2010jhm1236.1
Subject(s) - hydrometeorology , flood myth , hydrology (agriculture) , flooding (psychology) , environmental science , watershed , extratropical cyclone , drainage basin , 100 year flood , surface runoff , precipitation , flood forecasting , structural basin , climatology , orographic lift , geology , geography , meteorology , ecology , psychology , paleontology , geotechnical engineering , cartography , archaeology , machine learning , computer science , psychotherapist , biology
Extreme floods in the Delaware River basin are examined through analyses of a sequence of record and near-record floods during September 2004, April 2005, and June 2006. The three flood episodes reflect three principal flood-generating mechanisms in the eastern United States: tropical cyclones (September 2004); late winter–early spring extratropical systems (April 2005); and warm-season convective systems (June 2006). Extreme flooding in the Delaware River basin is the product of heavy rainfall and runoff from high-gradient portions of the watershed. Orographic precipitation mechanisms play a central role in the extreme flood climatology of the Delaware River basin and, more generally, for the eastern United States. Extreme flooding for the 2004–06 events was produced in large measure from forested portions of the watershed. Analyses of flood frequency based on annual flood peak observations from U.S. Geological Survey (USGS) stream gauging stations with “long” records illustrate the striking heterogeneity of flood response over the region, the important role of landfalling tropical cyclones for the upper tail of flood peak distributions, and the prevalence of nonstationarities in flood peak records. Analyses show that changepoints are a more common source of nonstationarity than linear time trends. Regulation by dams and reservoirs plays an important role in determining changepoints, but the downstream effects of reservoirs on flood distributions are limited.