
A Three-Year Climatology of Cloud-Top Phase over the Southern Ocean and North Pacific
Author(s) -
Anthony Edward Morrison,
Steven T. Siems,
M. J. Manton
Publication year - 2011
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/2010jcli3842.1
Subject(s) - moderate resolution imaging spectroradiometer , climatology , cloud top , tops , environmental science , cloud fraction , cloud albedo , cloud cover , lidar , cirrus , cloud height , satellite , shortwave radiation , cloud computing , atmospheric sciences , geology , remote sensing , radiation , physics , quantum mechanics , astronomy , azimuth , aerospace engineering , computer science , engineering , operating system
Moderate Resolution Imaging Spectroradiometer (MODIS) Level 2 observations from the Terra satellite are used to create a 3-yr climatology of cloud-top phase over a section of the Southern Ocean (south of Australia) and the North Pacific Ocean. The intent is to highlight the extensive presence of supercooled liquid water over the Southern Ocean region, particularly during summer. The phase of such clouds directly affects the absorbed shortwave radiation, which has recently been found to be “poorly simulated in both state-of-the-art reanalysis and coupled global climate models” (Trenberth and Fasullo). The climatology finds that supercooled liquid water is present year-round in the low-altitude clouds across this section of the Southern Ocean. Further, the MODIS cloud phase algorithm identifies very few glaciated cloud tops at temperatures above −20°C, rather inferring a large portion of “uncertain” cloud tops. Between 50° and 60°S during the summer, the albedo effect is compounded by a seasonal reduction in high-level cirrus. This is in direct contrast to the Bering Sea and Gulf of Alaska. Here MODIS finds a higher likelihood of observing warm liquid water clouds during summer and a reduction in the relative frequency of cloud tops within the 0° to −20°C temperature range. As the MODIS cloud phase product has limited ability to confidently identify cloud-top phase between −5° and −25°C, future research should include observations from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and other space-based sensors to help with the classification within this temperature range. Further, multiregion in situ verification of any remotely sensed observations is vital to further understanding the cloud phase processes.