z-logo
open-access-imgOpen Access
Regional Climate Model Projections and Uncertainties of U.S. Summer Heat Waves
Author(s) -
Kenneth E. Kunkel,
XinZhong Liang,
Jiamin Zhu
Publication year - 2010
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/2010jcli3349.1
Subject(s) - heat wave , climatology , downscaling , environmental science , climate change , climate model , general circulation model , atmospheric sciences , range (aeronautics) , geology , oceanography , materials science , composite material
Regional climate model (RCM) simulations, driven by low and high climate-sensitivity coupled general circulation models (CGCMs) under various future emissions scenarios, were compared to projected changes in heat wave characteristics. The RCM downscaling reduces the CGCM biases in heat wave threshold temperature by a factor of 2, suggesting a higher credibility in the future projections. All of the RCM simulations suggest that there is a high probability of heat waves of unprecedented severity by the end of the twenty-first century if a high emissions path is followed. In particular, the annual 3-day heat wave temperature increases generally by 3°–8°C; the number of heat wave days increases by 30–60 day yr−1 over much of the western and southern United States with slightly smaller increases elsewhere; the variance spectra for intermediate, 3–7 days (prolonged, 7–14 days), temperature extremes increase (decrease) in the central (western) United States. If a lower emissions path is followed, then the outcomes range from quite small changes to substantial increases. In all cases, the mean temperature climatological shift is the dominant change in heat wave characteristics, suggesting that adaptation and acclimatization could reduce effects.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here