
Atmospheric Local Energetics and Energy Interactions between Mean and Eddy Fields. Part I: Theory
Author(s) -
Shigenori Murakami
Publication year - 2011
Publication title -
journal of the atmospheric sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.853
H-Index - 173
eISSN - 1520-0469
pISSN - 0022-4928
DOI - 10.1175/2010jas3664.1
Subject(s) - physics , energy (signal processing) , energy flux , diagram , statistical physics , energetics , transient (computer programming) , representation (politics) , kinetic energy , classical mechanics , mechanics , mathematics , thermodynamics , quantum mechanics , statistics , computer science , operating system , politics , political science , law
A new diagnostic scheme for the atmospheric local energetics is proposed. In contrast to conventional schemes, this scheme correctly represents the local features of the Lorenz energy cycle for time-mean and transient-eddy fields. The key point is that the energy equation is divided not into two but into three parts consisting of the mean, eddy, and interaction energy equations, when basic variables are divided into mean and eddy fields. The interaction energy itself vanishes when appropriate averaging is taken. However, the equation for interaction energy does not vanish and gives a relationship between the interaction energy flux and the two types of energy conversion terms. These three quantities give the complete information for the energy interactions between mean and eddy fields. The Lorenz energy diagram is reconstructed to include a representation of this relationship. A brief discussion about the relationship with wave activity analysis is also given.