
Transient Dynamics of Nonsymmetric Perturbations versus Symmetric Instability in Baroclinic Zonal Shear Flows
Author(s) -
G. Mamatsashvili,
Victor Avsarkisov,
G. D. Chagelishvili,
R. Chanishvili,
М. В. Калашник
Publication year - 2010
Publication title -
journal of the atmospheric sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.853
H-Index - 173
eISSN - 1520-0469
pISSN - 0022-4928
DOI - 10.1175/2010jas3313.1
Subject(s) - baroclinity , physics , instability , inviscid flow , shear flow , vortex , vorticity , classical mechanics , geophysical fluid dynamics , mechanics , wavenumber , perturbation (astronomy) , normal mode , shear (geology) , geology , vibration , petrology , optics , quantum mechanics
The linear dynamics of symmetric and nonsymmetric perturbations in unbounded zonal inviscid flows with a constant vertical shear of velocity, when a fluid is incompressible and density is stably stratified along the vertical and meridional directions, is investigated. A small–Richardson number Ri ≲ 1 and large–Rossby number Ro ≳ 1 regime is considered, which satisfies the condition for symmetric instability. Specific features of this dynamics are closely related to the nonnormality of linear operators in shear flows and are well interpreted in the framework of the nonmodal approach by tracing the linear dynamics of spatial Fourier harmonics (Kelvin modes) of perturbations in time. The roles of stable stratification, the Coriolis parameter, and vertical shear in the dynamics of perturbations are analyzed. Classification of perturbations into two types or modes—vortex (i.e., quasigeostrophic balanced motions) and inertia–gravity wave—is made according to the value of potential vorticity. The emerging picture of the (linear) transient dynamics for these two modes at Ri ≲ 1 and Ro ≳ 1 indicates that vortex mode perturbations are able to gain basic flow energy and undergo exponential transient amplification and in this process generate inertia–gravity waves. Transient growth of the vortex mode and, consequently, the effectiveness of the wave generation both increase with decreasing Ri and increasing Ro. This linear coupling of perturbation modes is, in general, specific to shear flows but is not fully appreciated yet. A parallel analysis of the transient dynamics of nonsymmetric perturbations versus symmetric instability is also presented. It is shown that the nonnormality-induced transient growth of nonsymmetric perturbations can prevail over the symmetric instability for a wide range of Ri and Ro. The current analysis suggests that the dynamical activity of fronts and jet streaks at Ri ≲ 1 and Ro ≳ 1 should be determined by nonsymmetric perturbations rather than by symmetric ones, as was accepted in earlier papers. It is noteworthy that the transient growth of perturbations is asymmetric in the wavenumber space—the constant phase plane of maximally amplified perturbations is inclined in a direction northeast to the zonal one and the inclination angle is different for different Ri and Ro.