z-logo
open-access-imgOpen Access
MU Radar and Lidar Observations of Clear-Air Turbulence underneath Cirrus
Author(s) -
Hubert Luce,
Takuji Nakamura,
Masayuki Yamamoto,
Mamoru Yamamoto,
S. Fukao
Publication year - 2010
Publication title -
monthly weather review
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.862
H-Index - 179
eISSN - 1520-0493
pISSN - 0027-0644
DOI - 10.1175/2009mwr2927.1
Subject(s) - cirrus , lidar , wind shear , turbulence , cloud base , clear air turbulence , radiosonde , atmospheric sciences , convection , convective instability , meteorology , atmosphere (unit) , cloud physics , geology , physics , wind speed , remote sensing , cloud computing , computer science , operating system
Turbulence generation mechanisms prevalent in the atmosphere are mainly shear instabilities, breaking of internal buoyancy waves, and convective instabilities such as thermal convection due to heating of the ground. In the present work, clear-air turbulence underneath a cirrus cloud base is described owing to coincident observations from the VHF (46.5 MHz) middle and upper atmosphere (MU) radar, a Rayleigh–Mie–Raman (RMR) lidar, and a balloon radiosonde on 7–8 June 2006 (at Shigaraki, Japan; 34.85°N, 136.10°E). Time–height cross section of lidar backscatter ratio obtained at 2206 LT 7 June 2006 showed the presence of a cirrus layer between 8.0 and 12.5 km MSL. Downward-penetrating structures of ice crystals with horizontal and vertical extents of 1.0–4.0 km and 200–800 m, respectively, have been detected at the cirrus cloud base for about 35 min. At the same time, the MU radar data revealed clear-air turbulence layers developing downward from the cloud base in the environment of the protuberances detected by the RMR lidar. Their maximum depth was about 2.0 km for about 1.5 h. They were associated with oscillatory vertical wind perturbations of up to ±1.5 m s−1 and variances of Doppler spectrum of 0.2–1.5 m−2 s−2. Analysis of the data suggests that the turbulence and the downward penetration of cloudy air were possibly the consequence of a convective instability (rather than a dynamical shear instability) that was likely due to sublimation of ice crystals in the subcloud region. Downward clear-air motions measured by the MU radar were associated with the descending protuberances, and updrafts were observed between them. These observations suggest that the cloudy air might have been pushed down by the downdrafts of the convective instability and pushed up by the updrafts to form the observed protuberances at the cloud base. These structures may be virga or perhaps more likely mamma as reported by recent observations of cirrus mamma with similar instruments and by numerical simulations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here