z-logo
open-access-imgOpen Access
In Situ Calibration of Hot-Film Probes Using a Collocated Sonic Anemometer: Implementation of a Neural Network
Author(s) -
E. Kit,
Arkady Cherkassky,
Tonio Sant,
Harindra J. S. Fernando
Publication year - 2010
Publication title -
journal of atmospheric and oceanic technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.774
H-Index - 124
eISSN - 1520-0426
pISSN - 0739-0572
DOI - 10.1175/2009jtecha1320.1
Subject(s) - anemometer , calibration , turbulence kinetic energy , artificial neural network , dissipation , wind speed , turbulence , acoustics , computer science , remote sensing , environmental science , meteorology , physics , geology , artificial intelligence , quantum mechanics , thermodynamics
Although the integral quantities of atmospheric turbulence are conveniently measured using sonic anemometers, obtaining relevant finescale variables such as the kinetic energy dissipation using conventional hot-film/wire techniques remains a challenge because of two main difficulties. The first difficulty is the mean wind variability, which causes violation of the requirement that mean winds have a specific alignment with the hot-film/wire probe. To circumvent this problem, a combination of collocated sonic and hot-film anemometers, with the former measuring mean winds and aligning the latter in the appropriate wind direction via an automated platform, is successfully designed and implemented. The second difficulty is the necessity of frequent and onerous calibrations akin to hot-film anemometry that lead to logistical difficulties during outdoor (field) measurements. This is addressed by employing sonic measurements to calibrate the hot films in the same combination, with the output (velocity) to input (voltage) transfer function for the hot film derived using a neural network (NN) model. The NN is trained using low-pass-filtered hot-film and sonic data taken in situ. This new hot-film calibration procedure is compared with the standard calibration method based on an external calibrator. It is inferred that the sonic-based NN method offers great potential as an alternative to laborious standard calibration techniques, particularly in the laboratory and in stable atmospheric boundary layer settings. The NN approximation technique is found to be superior to the conventionally used polynomial fitting methods when used in conjunction with unevenly spaced calibration velocity data generated by sonic anemometers.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here