z-logo
open-access-imgOpen Access
Modeling Landfast Sea Ice by Adding Tensile Strength
Author(s) -
C. König Beatty,
David M. Holland
Publication year - 2010
Publication title -
journal of physical oceanography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.706
H-Index - 143
eISSN - 1520-0485
pISSN - 0022-3670
DOI - 10.1175/2009jpo4105.1
Subject(s) - geology , sea ice , fast ice , iceberg , rheology , submarine pipeline , drift ice , ice shelf , arctic ice pack , oceanography , cryosphere , physics , thermodynamics
Landfast ice is sea ice that forms and remains fixed along a coast, where it is either attached to the shore or held between shoals or grounded icebergs. The current generation of sea ice models is not capable of reproducing certain aspects of landfast ice behavior, for example the persistence of landfast sea ice under the effect of offshore winds. The authors develop a landfast sea ice model by adding tensile strength to the viscous–plastic as well as two versions of the elastic–viscous–plastic sea ice rheologies. One-dimensional implementations of these rheologies are used to explore the ability of coastal sea ice to resist offshore winds over extended times. While all modified rheologies are capable of maintaining landfast ice–like structures in the model, only the viscous–plastic rheology fulfills theoretical expectations. The elastic–viscous–plastic rheologies show initial elastic waves that weaken the ice and thus reduce its capacity of maintaining landfast ice. Further, special care has to be taken when implementing the most commonly used version of the elastic–viscous–plastic rheology because the standard set of parameters is not adequate for landfast sea ice modeling.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here