z-logo
open-access-imgOpen Access
Analysis of the Relationship of U.S. Droughts with SST and Soil Moisture: Distinguishing the Time Scale of Droughts
Author(s) -
Renguang Wu,
James L. Kinter
Publication year - 2009
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/2009jcli2841.1
Subject(s) - forcing (mathematics) , climatology , environmental science , sea surface temperature , precipitation , water content , boreal , tropics , moisture , geography , geology , meteorology , ecology , geotechnical engineering , archaeology , biology
The impacts of droughts depend on how long droughts persist and the reasons why droughts extend to different time scales may be different. The present study distinguishes the time scale of droughts based on the standardized precipitation index and analyzes the relationship of boreal summer U.S. droughts with sea surface temperature (SST) and soil moisture. It is found that the roles of remote SST forcing and local soil moisture differ significantly for long-term and short-term droughts in the U.S. Great Plains and Southwest. For short-term droughts (≤3 months), simultaneous remote SST forcing plays an important role with an additional contribution from soil moisture. For medium-term and long-term droughts (≥6 months), both simultaneous and antecedent SST forcing contribute to droughts, and the soil moisture is important for the persistence of droughts through a positive feedback to precipitation. The antecedent remote SST forcing contributes to droughts through soil moisture and evaporation changes. The tropical Pacific SST is the dominant remote forcing for U.S. droughts. The most notable impacts of the tropical Pacific SST are found in the Southwest with extensions to the Great Plains. Tropical Indian Ocean SST forcing has a notable influence on medium-term and long-term U.S. droughts. The relationships between tropical Indian and Pacific Ocean SST and boreal summer U.S. droughts have undergone obvious long-term changes, especially for the Great Plains droughts.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here