Open Access
A Combined Multisensor Optimal Estimation Retrieval Algorithm for Oceanic Warm Rain Clouds
Author(s) -
A. D. Rapp,
Gregory S. Elsaesser,
C. Kummerow
Publication year - 2009
Publication title -
journal of applied meteorology and climatology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.079
H-Index - 134
eISSN - 1558-8432
pISSN - 1558-8424
DOI - 10.1175/2009jamc2156.1
Subject(s) - environmental science , water cycle , precipitation , satellite , brightness temperature , liquid water path , international satellite cloud climatology project , atmosphere (unit) , diurnal cycle , sea surface temperature , atmospheric sciences , meteorology , climatology , remote sensing , cloud computing , cloud cover , microwave , geology , computer science , geography , ecology , telecommunications , aerospace engineering , engineering , biology , operating system
The complicated interactions between cloud processes in the tropical hydrologic cycle and their responses to changes in environmental variables have been the focus of many recent investigations. Most studies that examine the response of the hydrologic cycle to temperature changes focus on deep convection and cirrus production, but recent results suggest that warm rain clouds may be more sensitive to temperature changes. These clouds are prevalent in the tropics and make considerable contributions to the radiation budget and to total tropical rainfall, as well as serving to moisten and precondition the atmosphere for deep convection. A change in the properties of these clouds in climate-change scenarios could have significant implications for the hydrologic cycle. Existing microwave and visible retrievals of warm rain cloud liquid water path (LWP) disagree over the range of sea surface temperatures (SST) observed in the tropical western Pacific Ocean. Although both retrieval methods show similar behavior for nonraining clouds, the two methods show very different warm-rain-cloud LWP responses to SST, both in magnitude and trend. This makes changes to the relationship between precipitation and cloud properties in changing temperature regimes difficult to interpret. A combined optimal estimation retrieval algorithm that takes advantage of the strengths of the different satellite measurements available on the Tropical Rainfall Measuring Mission (TRMM) satellite has been developed. Deconvolved TRMM Microwave Imager brightness temperatures are combined with cloud fraction from the Visible and Infrared Scanner and rainwater estimates from the TRMM precipitation radar to retrieve the cloud LWP in warm rain systems. This algorithm is novel in that it takes into account the water in the rain and estimates the LWP due to only the cloud water in a raining cloud, thus allowing investigation of the effects of precipitation on cloud properties.