z-logo
open-access-imgOpen Access
On the Improvement of COAMPS Weather Forecasts Using an Advanced Radiative Transfer Model
Author(s) -
Ming Liu,
Jason E. Nachamkin,
Douglas L. Westphal
Publication year - 2009
Publication title -
weather and forecasting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.393
H-Index - 106
eISSN - 1520-0434
pISSN - 0882-8156
DOI - 10.1175/2008waf2222137.1
Subject(s) - shortwave , environmental science , longwave , liquid water path , mesoscale meteorology , shortwave radiation , atmospheric radiative transfer codes , climatology , atmospheric sciences , weather research and forecasting model , atmosphere (unit) , troposphere , meteorology , radiative transfer , radiation , aerosol , physics , geology , quantum mechanics
Fu–Liou’s delta-four-stream (with a two-stream option) radiative transfer model has been implemented in the U.S. Navy’s Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS)1 to calculate solar and thermal infrared fluxes in 6 shortwave and 12 longwave bands. The model performance is evaluated at high resolution for clear-sky and overcast conditions against the observations from the Southern Great Plains of the Atmospheric Radiation Measurement Program. In both cases, use of the Fu–Liou model provides significant improvement over the operational implementation of the standard Harshvardhan radiation parameterization in both shortwave and longwave fluxes. A sensitivity study of radiative flux on clouds reveals that the choices of cloud effective radius schemes for ice and liquid water are critical to the flux calculation due to the effects on cloud optical properties. The sensitivity study guides the selection of optimal cloud optical properties for use in the Fu–Liou parameterization as implemented in COAMPS. The new model is then used to produce 3-day forecasts over the continental United States for a winter and a summer month. The verifications of parallel runs using the standard and new parameterizations show that Fu–Liou dramatically reduces the model’s systematic warm bias in the upper troposphere in both winter and summer. The resultant cooling modifies the atmospheric stability and moisture transport, resulting in a significant reduction in the upper-tropospheric wet bias. Overall ice and liquid water paths are also reduced. At the surface, Fu–Liou reduces the negative temperature and sea level pressure biases by providing more accurate radiative heating rates to the land surface model. The error reductions increase with forecast length as the impact of improved radiative fluxes accumulates over time. A combination of the two- and four-stream options results in major computational efficiency gains with minimal loss in accuracy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here