
Empirical Correction of a Coupled Land–Atmosphere Model
Author(s) -
Timothy DelSole,
Ming Zhao,
Paul A. Dirmeyer,
Ben P. Kirtman
Publication year - 2008
Publication title -
monthly weather review
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.862
H-Index - 179
eISSN - 1520-0493
pISSN - 0027-0644
DOI - 10.1175/2008mwr2344.1
Subject(s) - variance (accounting) , econometrics , forecast error , atmosphere (unit) , forecast skill , term (time) , relaxation (psychology) , statistics , observational error , measure (data warehouse) , mathematics , computer science , meteorology , economics , psychology , social psychology , physics , accounting , quantum mechanics , database
This paper investigates empirical strategies for correcting the bias of a coupled land–atmosphere model and tests the hypothesis that a bias correction can improve the skill of such models. The correction strategies investigated include 1) relaxation methods, 2) nudging based on long-term biases, and 3) nudging based on tendency errors. The last method involves estimating the tendency errors of prognostic variables based on short forecasts—say lead times of 24 h or less—and then subtracting the climatological mean value of the tendency errors at every time step. By almost any measure, the best correction strategy is found to be nudging based on tendency errors. This method significantly reduces biases in the long-term forecasts of temperature and soil moisture, and preserves the variance of the forecast field, unlike relaxation methods. Tendency errors estimated from ten 1-day forecasts produced just as effective corrections as tendency errors estimated from all days in a month, implying that the method is trivial to implement by modern standards. Disappointingly, none of the methods investigated consistently improved the random error variance of the model, although this finding may be model dependent. Nevertheless, the empirical correction method is argued to be worthwhile even if it improves only the bias, because the method has only marginal impacts on the numerical speed and represents forecast error in the form of a tendency error that can be compared directly to other terms in the tendency equations, which in turn provides clues as to the source of the forecast error.