z-logo
open-access-imgOpen Access
The Effect of Mesoscale Heterogeneity on the Genesis and Structure of Mesovortices within Quasi-Linear Convective Systems
Author(s) -
Dustan M. Wheatley,
Robert J. Trapp
Publication year - 2008
Publication title -
monthly weather review
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.862
H-Index - 179
eISSN - 1520-0493
pISSN - 0027-0644
DOI - 10.1175/2008mwr2294.1
Subject(s) - mesoscale meteorology , convection , outflow , vortex , geology , mechanics , convective available potential energy , wind shear , atmospheric sciences , meteorology , physics , wind speed , climatology
This study examines the structure and evolution of quasi-linear convective systems (QLCSs) within complex mesoscale environments. Convective outflows and other mesoscale features appear to affect the rotational characteristics and associated dynamics of these systems. Thus, real-data numerical simulations of two QLCS events have been performed to (i) identify and characterize the various ambient mesoscale features that modify the structure and evolution of simulated QLCSs; and then to (ii) determine the nature of interaction of such features with the systems, with an emphasis on the genesis and evolution of low-level mesovortices. Significant low-level mesovortices develop in both simulated QLCSs as a consequence of mechanisms internal to the system—consistent with idealized numerical simulations of mesovortex-bearing QLCSs—and not as an effect of system interaction with external heterogeneity. However, meso-γ-scale (order of 10 km) heterogeneity in the form of a convective outflow boundary is sufficient to affect mesovortex strength, as air parcels populating the vortex region encounter enhanced convergence at the point of QLCS–boundary interaction. Moreover, meso-β-scale (order of 100 km) heterogeneity in the form of interacting air masses provides for along-line variations in the distributions of low- to midlevel vertical wind shear and convective available potential energy. The subsequent impact on updraft strength/tilt has implications on the vortex stretching experienced by leading-edge mesovortices.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here