z-logo
open-access-imgOpen Access
Investigation of Non-Gaussian Doppler Spectra Observed by Weather Radar in a Tornadic Supercell
Author(s) -
Tian-You Yu,
Ricardo Reinoso-Rondinel,
Robert D. Palmer
Publication year - 2009
Publication title -
journal of atmospheric and oceanic technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.774
H-Index - 124
eISSN - 1520-0426
pISSN - 0739-0572
DOI - 10.1175/2008jtecha1124.1
Subject(s) - autocovariance , supercell , gaussian , spectral line , multitaper , doppler effect , physics , geology , computational physics , mathematics , meteorology , mathematical analysis , statistics , fourier transform , storm , astronomy , quantum mechanics
Radar Doppler spectra that deviate from a Gaussian shape were observed from a tornadic supercell on 10 May 2003, exhibiting features such as a dual peak, flat top, and wide skirt in the nontornadic region. Motivated by these observations, a spectral model of a mixture of two Gaussian components, each defined by its three spectral moments, is introduced to characterize different degrees of deviation from Gaussian shape. In the standard autocovariance method, a Gaussian spectrum is assumed and biases in velocity and spectrum width estimates may result if this assumption is violated. The impact of non-Gaussian weather spectra on these biases is formulated and quantified in theory and, consequently, verified using four experiments of numerical simulations. Those non-Gaussian spectra from the south region of the supercell are further examined and a nonlinear fitting algorithm is proposed to estimate the six spectral moments and compare to those obtained from the autocovariance method. It is shown that the dual-Gaussian model can better represent observed spectra for those cases. The authors’ analysis suggests that vertical shear may be responsible for the flat-top or the dual-peak spectra in the lower elevation of 0.5° and their transition to the single-peak and wide-skirt spectra in the next elevation scan of 1.5°.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here