
Drought Index Mapping at Different Spatial Units
Author(s) -
Jinyoung Rhee,
Gregory J. Carbone,
James R. Hussey
Publication year - 2008
Publication title -
journal of hydrometeorology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.733
H-Index - 123
eISSN - 1525-755X
pISSN - 1525-7541
DOI - 10.1175/2008jhm983.1
Subject(s) - interpolation (computer graphics) , multivariate interpolation , kriging , inverse distance weighting , spatial analysis , spatial dependence , spatial variability , mathematics , geostatistics , spatial correlation , statistics , computer science , bilinear interpolation , artificial intelligence , motion (physics)
This paper investigates the influence of spatial interpolation and aggregation of data to depict drought at different spatial units relevant to and often required for drought management. Four different methods for drought index mapping were explored, and comparisons were made between two spatial operation methods (simple unweighted average versus spatial interpolation plus aggregation) and two calculation procedures (whether spatial operations are performed before or after the calculations of drought index values). Deterministic interpolation methods including Thiessen polygons, inverse distance weighted, and thin-plate splines as well as a stochastic and geostatistical interpolation method of ordinary kriging were compared for the two methods that use interpolation. The inverse distance weighted method was chosen based on the cross-validation error. After obtaining drought index values for different spatial units using each method in turn, differences in the empirical binned frequency distributions were tested between the methods and spatial units. The two methods using interpolation and aggregation introduced fewer errors in cross validation than the two simple unweighted average methods. Whereas the method performing spatial interpolation and aggregation before calculating drought index values generally provided consistent drought information between various spatial units, the method performing spatial interpolation and aggregation after calculating drought index values reduced errors related to the calculations of precipitation data.