z-logo
open-access-imgOpen Access
Convectively Coupled Equatorial Waves in High-Resolution Hadley Centre Climate Models
Author(s) -
GuiYing Yang,
Julia Slingo,
Brian J. Hoskins
Publication year - 2009
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/2008jcli2630.1
Subject(s) - equatorial waves , kelvin wave , convection , atmospheric wave , atmospheric convection , hadley cell , geology , climatology , geophysics , tropical wave , atmospheric sciences , climate model , atmospheric model , atmospheric models , wave propagation , gravity wave , meteorology , physics , equator , general circulation model , climate change , latitude , geodesy , ionosphere , optics , oceanography
A methodology for diagnosing convectively coupled equatorial waves is applied to output from two high-resolution versions of atmospheric models, the Hadley Centre Atmospheric Model, version 3 (HadAM3), and the new Hadley Centre Global Atmospheric Model, version 1 (HadGAM1), which have fundamental differences in dynamical formulation. Variability, horizontal and vertical structures, and propagation characteristics of tropical convection and equatorial waves, along with their coupled behavior in the models, are examined and evaluated against a previous comprehensive study of observed convectively coupled equatorial waves using the 15-yr ECMWF Re-Analysis (ERA-15) and satellite observed data. The extent to which the models are able to represent the coupled waves found in real atmospheric observations is investigated. It is shown that, in general, the models perform well for equatorial waves coupled with off-equatorial convection. However, they perform poorly for waves coupled with equatorial convection. Convection in both models contains much-reduced variance in equatorial regions, but reasonable off-equatorial variance. The models fail to simulate coupling of the waves with equatorial convection and the tendency for equatorial convection to appear in the region of wave-enhanced near-surface westerlies. In addition, the simulated Kelvin wave and its associated convection generally tend to have lower frequency and slower phase speed than that observed. The models are also not able to capture the observed vertical tilt structure and signatures of energy conversion in the Kelvin wave, particularly in HadAM3. On the other hand, models perform better in simulating westward-moving waves coupled with off-equatorial convection, in terms of horizontal and vertical structures, zonal propagation, and energy conversion signals. In most cases both models fail to simulate well a key picture emerging from the observations, that some wave modes in the lower troposphere can act as a forcing agent for equatorial convection, and that the upper-tropospheric waves generally appear to be forced by the convection both on and off the equator.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here