z-logo
open-access-imgOpen Access
An Analysis of Tropical Ocean Diurnal Warm Layers
Author(s) -
Hugo Bellenger,
JeanPhilippe Duvel
Publication year - 2009
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/2008jcli2598.1
Subject(s) - climatology , environmental science , homogeneity (statistics) , latitude , sea surface temperature , longitude , diurnal cycle , atmospheric sciences , tropics , geology , mathematics , geodesy , fishery , biology , statistics
During periods of light surface wind, a warm stable layer forms at the ocean surface with a maximum sea surface temperature (SST) in the early afternoon. The diurnal SST amplitude (DSA) associated with these diurnal warm layers (DWLs) can reach several degrees and impact the tropical climate variability. This paper first presents an approach to building a daily time series of the DSA over the tropics between 1979 and 2002. The DSA is computed over 2.5° of latitude–longitude regions using a simple DWL model forced by hourly-interpolated surface radiative and turbulent fluxes given by the 40-yr ECMWF Re-Analysis (ERA-40). One advantage of this approach is the homogeneity of the results given by the relative homogeneity of ERA-40. The approach is validated at the global scale using empirical DWL models reported in the literature and the Surface Velocity Program (SVP) drifters of the Marine Environmental Data Service (MEDS). For the SVP dataset, a new technique is introduced to derive the diurnal variation of the temperature from raw measurements. This DWL time series is used to analyze the potential role of DWLs in the variability of the tropical climate. The perturbation of the surface fluxes by DWLs can give a cooling of the ocean mixed layer as large as 2.5 K yr−1 in some tropical regions. On a daily basis, this flux perturbation is often above 10 W m−2 and sometimes exceeds 50 W m−2. DWLs can be organized on regions up to a few thousand kilometers and can persist for more than 5 days. It is shown that strong DWLs develop above the equatorial Indian Ocean during the suppressed phase of the intraseasonal oscillation (ISO). DWLs may trigger large-scale convective events and favor the eastward propagation of the ISO convective perturbation during boreal winter. This study also suggests that the simple approach presented here may be used as a DWL parameterization for atmospheric general circulation models.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here