z-logo
open-access-imgOpen Access
ENSO and Extreme Rainfall Events in South America
Author(s) -
Alice M. Grimm,
Renata G. Tedeschi
Publication year - 2009
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/2008jcli2429.1
Subject(s) - climatology , precipitation , el niño southern oscillation , environmental science , percentile , extreme value theory , multivariate enso index , climate extremes , climate change , la niña , atmospheric sciences , geography , meteorology , geology , oceanography , mathematics , statistics
The influence of the opposite phases of ENSO on the frequency of extreme rainfall events over South America is analyzed for each month of the ENSO cycle on the basis of a large set of daily station rainfall data and compared with the influence of ENSO on the monthly total rainfall. The analysis is carried out with station data and their gridded version and the results are consistent. Extreme events are defined as 3-day mean precipitation above the 90th percentile. The mean frequencies of extreme events are determined for each month and for each category of year (El Niño, La Niña, and neutral), and the differences between El Niño and neutral years and La Niña and neutral years are computed. Changes in the mean intensity of extreme events are also investigated. Significant ENSO signals in the frequency of extreme events are found over extensive regions of South America during different periods of the ENSO cycle. Although ENSO-related changes in intensity show less significance and spatial coherence, there are some robust changes in several regions, especially in southeastern South America. The ENSO-related changes in the frequency of extreme rainfall events are generally coherent with changes in total monthly rainfall quantities. However, significant changes in extremes are much more extensive than the corresponding changes in monthly rainfall because the highest sensitivity to ENSO seems to be in the extreme range of daily precipitation. This is important, since the most dramatic consequences of climate variability result from changes in extreme events. The pattern of frequency changes produced by El Niño and La Niña episodes with respect to neutral years is roughly symmetric, but there are several examples of nonlinearity in the ENSO regional teleconnections.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here