
The Importance of High-Frequency Sea Surface Temperature Variability to the Intraseasonal Oscillation of Indian Monsoon Rainfall
Author(s) -
Nicholas P. Klingaman,
Peter Inness,
Hilary Weller,
Julia Slingo
Publication year - 2008
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/2008jcli2329.1
Subject(s) - climatology , predictability , environmental science , monsoon , madden–julian oscillation , precipitation , sea surface temperature , atmospheric sciences , la niña , satellite , geology , meteorology , el niño southern oscillation , geography , mathematics , convection , physics , astronomy , statistics
While the Indian monsoon exhibits substantial variability on interannual time scales, its intraseasonal variability (ISV) is of greater magnitude and hence of critical importance for monsoon predictability. This ISV comprises a 30–50-day northward-propagating oscillation (NPISO) between active and break events of enhanced and reduced rainfall, respectively, over the subcontinent. Recent studies have implied that coupled general circulation models (CGCMs) were better able to simulate the NPISO than their atmosphere-only counterparts (AGCMs). These studies have forced their AGCMs with SSTs from coupled integrations or observations from satellite-based infrared sounders, both of which underestimate the ISV of tropical SSTs. The authors have forced the 1.25° × 0.83° Hadley Centre Atmospheric Model (HadAM3) with a daily, high-resolution, observed SST analysis from the United Kingdom National Center for Ocean Forecasting that contains greater ISV in the Indian Ocean than past products. One ensemble of simulations was forced by daily SSTs, a second with monthly means, and a third with 5-day means. The ensemble with daily SSTs displayed significantly greater variability in 30–50-day rainfall across the monsoon domain than the ensemble with monthly mean SSTs, variability similar to satellite-derived precipitation analyses. Individual ensemble members with daily SSTs contained intraseasonal events with a strength, a propagation speed, and an organization that closely matched observed events. When ensemble members with monthly mean SSTs displayed power in intraseasonal rainfall, the events were weak and disorganized, and they propagated too quickly. The ensemble with 5-day means had less intraseasonal rainfall variability than the ensemble with daily SSTs but still produced coherent NPISO-like events, indicating that SST variability at frequencies higher than 5 days contributes to but is not critical for simulations of the NPISO. It is concluded that high-frequency SST anomalies not only increased variance in intraseasonal rainfall but helped to organize and maintain coherent NPISO-like convective events. Further, the results indicate that an AGCM can respond to realistic and frequent SST forcing to generate an NPISO that closely resembles observations. These results have important implications for simulating the NPISO in AGCMs and coupled climate models, as well as for predicting tropical ISV in short- and medium-range weather forecasts.