
The Mesoscale Kinetic Energy Spectrum of a Baroclinic Life Cycle
Author(s) -
Michael L. Waite,
Chris Snyder
Publication year - 2009
Publication title -
journal of the atmospheric sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.853
H-Index - 173
eISSN - 1520-0469
pISSN - 0022-4928
DOI - 10.1175/2008jas2829.1
Subject(s) - baroclinity , mesoscale meteorology , kinetic energy , stratosphere , troposphere , physics , gravity wave , rotational energy , atmospheric sciences , geology , mechanics , classical mechanics , astrophysics , meteorology , gravitational wave
The atmospheric mesoscale kinetic energy spectrum is investigated through numerical simulations of an idealized baroclinic wave life cycle, from linear instability to mature nonlinear evolution and with high horizontal and vertical resolution (Δx ≈ 10 km and Δz ≈ 60 m). The spontaneous excitation of inertia–gravity waves yields a shallowing of the mesoscale spectrum with respect to the large scales, in qualitative agreement with observations. However, this shallowing is restricted to the lower stratosphere and does not occur in the upper troposphere. At both levels, the mesoscale divergent kinetic energy spectrum—a proxy for the inertia–gravity wave energy spectrum—resembles a −5/3 power law in the mature stage. Divergent kinetic energy dominates the lower stratospheric mesoscale spectrum, accounting for its shallowing. Rotational kinetic energy, by contrast, dominates the upper tropospheric spectrum and no shallowing of the full spectrum is observed. By analyzing the tendency equation for the kinetic energy spectrum, it is shown that the lower stratospheric spectrum is not governed solely by a downscale energy cascade; rather, it is influenced by the vertical pressure flux divergence associated with vertically propagating inertia–gravity waves.