z-logo
open-access-imgOpen Access
Extratropical Transition of Tropical Cyclones in the Western North Pacific: Their Frontal Evolution
Author(s) -
Naoko Kitabatake
Publication year - 2008
Publication title -
monthly weather review
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.862
H-Index - 179
eISSN - 1520-0493
pISSN - 0027-0644
DOI - 10.1175/2007mwr1958.1
Subject(s) - extratropical cyclone , middle latitudes , climatology , advection , tropical cyclone , trough (economics) , typhoon , geology , troposphere , jet stream , baroclinity , warm front , cyclogenesis , cyclone (programming language) , environmental science , atmospheric sciences , oceanography , jet (fluid) , economics , macroeconomics , physics , field programmable gate array , computer science , computer hardware , thermodynamics
Extratropical transition (ET) in the western North Pacific during 2001–02 is examined in terms of frontal evolution and its environment using a gridded global analysis dataset produced by the Japan Meteorological Agency. According to the best-track data created by the Regional Specialized Meteorological Center (RSMC) Tokyo-Typhoon Center, 23 out of 52 (44%) tropical cyclones (TCs) completed ET during these two years. These ET cases are classified into three categories in terms of the lower-tropospheric equivalent potential temperature distributions, characteristics of the TCs, and their environments. Eight TCs (35% of all ET cases) had temporary warm secluded frontal patterns and then occluded patterns at the completion of ET, which is defined as a seclusion–occlusion (SO) type. This occurs downstream of an intense upper-tropospheric trough interacting with a TC, which is then likely to move northward while keeping its tropical characteristics and have a large impact on relatively high latitudes including all the Japan islands. Three TCs (13%) were apparently absorbed into vigorous preexisting fronts in the southwest of midlatitude cyclones; this situation is defined as a cold advection (CA) type. A TC of the CA type is likely to lose its tropical characteristics rapidly in strong cold advection that is equatorward of a relatively straight upper-tropospheric jet stream. The other 12 TCs (52%) were organized into an open-wave frontal cyclone, which is defined as an open-wave (OW) type. This has characteristics of both SO and CA and is more related to the midlatitude baroclinic zone compared with the SO type.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here