z-logo
open-access-imgOpen Access
Product-Error-Driven Uncertainty Model for Probabilistic Quantitative Precipitation Estimation with NEXRAD Data
Author(s) -
Grzegorz J. Ciach,
Witold F. Krajewski,
Gabriele Villarini
Publication year - 2007
Publication title -
journal of hydrometeorology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.733
H-Index - 123
eISSN - 1525-755X
pISSN - 1525-7541
DOI - 10.1175/2007jhm814.1
Subject(s) - quantitative precipitation estimation , probabilistic logic , radar , environmental science , precipitation , meteorology , rain gauge , computer science , nonparametric statistics , statistics , remote sensing , mathematics , geography , telecommunications
Although it is broadly acknowledged that the radar-rainfall (RR) estimates based on the U.S. national network of Weather Surveillance Radar-1988 Doppler (WSR-88D) stations contain a high degree of uncertainty, no methods currently exist to inform users about its quantitative characteristics. The most comprehensive characterization of this uncertainty can be achieved by delivering the products in a probabilistic rather than the traditional deterministic form. The authors are developing a methodology for probabilistic quantitative precipitation estimation (PQPE) based on weather radar data. In this study, they present the central element of this methodology: an empirically based error structure model for the RR products. The authors apply a product-error-driven (PED) approach to obtain a realistic uncertainty model. It is based on the analyses of six years of data from the Oklahoma City, Oklahoma, WSR-88D radar (KTLX) processed with the Precipitation Processing System algorithm of the NEXRAD system. The modeled functional-statistical relationship between RR estimates and corresponding true rainfall consists of two components: a systematic distortion function and a stochastic factor quantifying remaining random errors. The two components are identified using a nonparametric functional estimation apparatus. The true rainfall is approximated with rain gauge data from the Oklahoma Mesonet and the U.S. Department of Agriculture (USDA) Agricultural Research Service Micronet networks. The RR uncertainty model presented here accounts for different time scales, synoptic regimes, and distances from the radar. In addition, this study marks the first time in which results on RR error correlation in space and time are presented.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here