z-logo
open-access-imgOpen Access
Spatial and Temporal Variation of Precipitation in Greece and Surrounding Regions Based on Global Precipitation Climatology Project Data
Author(s) -
N. Hatzianastassiou,
B. D. Katsoulis,
John D. Pnevmatikos,
V. Antakis
Publication year - 2008
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/2007jcli1682.1
Subject(s) - precipitation , climatology , context (archaeology) , environmental science , mediterranean climate , spatial distribution , period (music) , geography , geology , meteorology , physics , remote sensing , acoustics , archaeology
In this study, the spatial and temporal distribution of precipitation in the broader Greek area is investigated for the 26-yr period 1979–2004 by using monthly mean satellite-based data, with complete spatial coverage, taken from the Global Precipitation Climatology Project (GPCP). The results show that there exists a clear contrast between the more rainy western Greek area (rainside) and the drier eastern one (rainshadow), whereas there is little precipitation over the islands, particularly in the southern parts. The computed long-term areal mean annual precipitation amount averaged for the study area is equal to P = 639.8 ± 44.8 mm yr−1, showing a decreasing trend of −2.32 mm yr−1 or −60.3 mm over the 26-yr study period, which corresponds to −9.4%. This decrease of precipitation, arising primarily in winter and secondarily in spring, is the result of a decreasing trend from 1979 through the 1980s, against an increase during the 1990s through the early 2000s, followed again by a decrease up to the year 2004. The performed analysis reveals an increasing trend of precipitation in the central and northern parts of the study region, contrary to an identified decreasing trend in the southern parts, which is indicative of threatening desertification processes in those areas in the context of climatic changes in the climatically sensitive Mediterranean basin. In addition, the analysis shows that the precipitation decrease is due to a corresponding decrease of maximum precipitation against rather unchanged minimum precipitation amounts. The analysis indicates that the changing precipitation patterns in the region during winter are significantly anticorrelated with the North Atlantic Oscillation (NAO) index values, against a positive correlation during summer, highlighting thus the role of large-scale circulation patterns for regional climates. The GPCP precipitation data are satisfactorily correlated with instrumental measurements from 36 stations uniformly distributed over the study area (correlation coefficient R = 0.74 for all stations; R = 0.63–0.91 for individual stations).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here