z-logo
open-access-imgOpen Access
Dewpoint Temperature Prediction Using Artificial Neural Networks
Author(s) -
Daniel B. Shank,
Gerrit Hoogenboom,
R. W. McClendon
Publication year - 2008
Publication title -
journal of applied meteorology and climatology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.079
H-Index - 134
eISSN - 1558-8432
pISSN - 1558-8424
DOI - 10.1175/2007jamc1693.1
Subject(s) - dew point , environmental science , meteorology , artificial neural network , relative humidity , wind speed , dew , snow , water vapor , weather forecasting , humidity , air temperature , evapotranspiration , range (aeronautics) , atmospheric sciences , computer science , machine learning , geology , geography , engineering , ecology , aerospace engineering , condensation , biology
Dewpoint temperature, the temperature at which water vapor in the air will condense into liquid, can be useful in estimating frost, fog, snow, dew, evapotranspiration, and other meteorological variables. The goal of this study was to use artificial neural networks (ANNs) to predict dewpoint temperature from 1 to 12 h ahead using prior weather data as inputs. This study explores using three-layer backpropagation ANNs and weather data combined for three years from 20 locations in Georgia, United States, to develop general models for dewpoint temperature prediction anywhere within Georgia. Specific objectives included the selection of the important weather-related inputs, the setting of ANN parameters, and the selection of the duration of prior input data. An iterative search found that, in addition to dewpoint temperature, important weather-related ANN inputs included relative humidity, solar radiation, air temperature, wind speed, and vapor pressure. Experiments also showed that the best models included 60 nodes in the ANN hidden layer, a ±0.15 initial range for the ANN weights, a 0.35 ANN learning rate, and a duration of prior weather-related data used as inputs ranging from 6 to 30 h based on the lead time. The evaluation of the final models with weather data from 20 separate locations and for a different year showed that the 1-, 4-, 8-, and 12-h predictions had mean absolute errors (MAEs) of 0.550°, 1.234°, 1.799°, and 2.280°C, respectively. These final models predicted dewpoint temperature adequately using previously unseen weather data, including difficult freeze and heat stress extremes. These predictions are useful for decisions in agriculture because dewpoint temperature along with air temperature affects the intensity of freezes and heat waves, which can damage crops, equipment, and structures and can cause injury or death to animals and humans.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here