z-logo
open-access-imgOpen Access
Effects of Wind on Convection in Strongly and Weakly Baroclinic Flows with Application to the Labrador Sea*
Author(s) -
Fiammetta Straneo,
Mitsuhiro Kawase,
Robert S. Pickart
Publication year - 2002
Publication title -
journal of physical oceanography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.706
H-Index - 143
eISSN - 1520-0485
pISSN - 0022-3670
DOI - 10.1175/1520-0485-32.9.2603
Subject(s) - baroclinity , buoyancy , convection , advection , geology , wind stress , front (military) , thermal wind , mechanics , atmospheric sciences , geophysics , climatology , wind shear , wind speed , oceanography , physics , thermodynamics
Large buoyancy loss driving deep convection is often associated with a large wind stress that is typically omitted in simulations of convection. Here it is shown that this omission is not justified when overturning occurs in a horizontally inhomogeneous ocean. In strongly baroclinic flows, convective mixing is influenced both by the background horizontal density gradient and by the across-front advection of buoyancy due to wind. The former process—known as slantwise convection—results in deeper convection, while the effect of wind depends on the relative orientation of wind with respect to the baroclinic front. For the case of the Labrador Sea, wintertime winds act to destabilize the baroclinic Labrador Current causing a buoyancy removal roughly one-third as large as the air–sea buoyancy loss. Simulations using a nonhydrostatic numerical model, initialized and forced with observed fields from the Labrador Sea, show how the combination of wind and lateral gradients can result in significant convection within the current, in contrast with previous ideas. Though the advection of buoyancy due to wind in weakly baroclinic flows is negligible compared to the surface buoyancy removal typical of convective conditions, convective plumes are substantially deformed by wind. This deformation, and the associated across-front secondary circulation, are explained in terms of the vertical advection of wind-generated vorticity from the surface boundary layer to deeper depths. This mechanism generates vertical structure within the convective layer, contradicting the historical notion that properties become vertically homogenized during convection. For the interior Labrador Sea, this mechanism may be partly responsible for the vertical variability observed during convection, which modeling studies have until now failed to reproduce.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here