z-logo
open-access-imgOpen Access
Interannual Variations of Summer Monsoons: Sensitivity to Cloud Radiative Forcing
Author(s) -
Om P. Sharma,
Hervé Le Treut,
Geneviève Sèze,
Laurent Fairhead,
R. Sadourny
Publication year - 1998
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/1520-0442-11.8.1883
Subject(s) - climatology , environmental science , radiative transfer , forcing (mathematics) , monsoon , atmospheric sciences , cloud cover , liquid water content , cloud computing , geology , physics , quantum mechanics , computer science , operating system
The sensitivity of the interannual variations of the summer monsoons to imposed cloudiness has been studied with a general circulation model using the initial conditions prepared from the European Centre for Medium-Range Forecasts analyses of 1 May 1987 and 1988. The cloud optical properties in this global model are calculated from prognostically computed cloud liquid water. The model successfully simulates the contrasting behavior of these two successive monsoons. However, when the optical properties of the observed clouds are specified in the model runs, the simulations show some degradation over India and its vicinity. The main cause of this degradation is the reduced land–sea temperature contrast resulting from the radiative effects of the observed clouds imposed in such simulations. It is argued that the high concentration of condensed water content of clouds over the Indian land areas will serve to limit heating of the land, thereby reducing the thermal contrast that gives rise to a weak Somali jet. A countermonsoon circulation is, therefore, simulated in the vector difference field of 850-hPa winds from the model runs with externally specified clouds. This countermonsoon circulation is associated with an equatorial heat source that is the response of the model to the radiative effects of the imposed clouds. Indeed, there are at least two clear points that can be made: 1) the cloud–SST patterns, together, affect the interannual variability; and 2) with both clouds and SST imposed, the model simulation is less sensitive to initial conditions. Additionally, the study emphasizes the importance of dynamically consistent clouds developing in response to the dynamical, thermal, and moist state of the atmosphere during model integrations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here