
Heuristic Feature Models for Detection of Disrupted Markov Patterns
Author(s) -
Dana Pietralla,
Keiji Ota,
Maria F. Dal Martello,
Laurence T. Maloney
Publication year - 2021
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/jov.21.9.2690
Subject(s) - sequence (biology) , generator (circuit theory) , feature (linguistics) , markov chain , pattern recognition (psychology) , subsequence , bayesian probability , artificial intelligence , mathematics , binary number , heuristic , computer science , algorithm , statistics , power (physics) , arithmetic , linguistics , philosophy , mathematical analysis , genetics , physics , quantum mechanics , bounded function , biology