z-logo
open-access-imgOpen Access
Challenges to pooling models of crowding: Implications for visual mechanisms
Author(s) -
Ruth Rosenholtz,
Dian Yu,
Shaiyan Keshvari
Publication year - 2019
Publication title -
journal of vision
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.126
H-Index - 113
ISSN - 1534-7362
DOI - 10.1167/jov.19.7.15
Subject(s) - pooling , computer science , set (abstract data type) , crowding , artificial intelligence , machine learning , cognitive psychology , psychology , programming language
A set of phenomena known as crowding reveal peripheral vision's vulnerability in the face of clutter. Crowding is important both because of its ubiquity, making it relevant for many real-world tasks and stimuli, and because of the window it provides onto mechanisms of visual processing. Here we focus on models of the underlying mechanisms. This review centers on a popular class of models known as pooling models, as well as the phenomenology that appears to challenge a pooling account. Using a candidate high-dimensional pooling model, we gain intuitions about whether a pooling model suffices and reexamine the logic behind the pooling challenges. We show that pooling mechanisms can yield substitution phenomena and therefore predict better performance judging the properties of a set versus a particular item. Pooling models can also exhibit some similarity effects without requiring mechanisms that pool at multiple levels of processing, and without constraining pooling to a particular perceptual group. Moreover, we argue that other similarity effects may in part be due to noncrowding influences like cuing. Unlike low-dimensional straw-man pooling models, high-dimensional pooling preserves rich information about the stimulus, which may be sufficient to support high-level processing. To gain insights into the implications for pooling mechanisms, one needs a candidate high-dimensional pooling model and cannot rely on intuitions from low-dimensional models. Furthermore, to uncover the mechanisms of crowding, experiments need to separate encoding from decision effects. While future work must quantitatively examine all of the challenges to a high-dimensional pooling account, insights from a candidate model allow us to conclude that a high-dimensional pooling mechanism remains viable as a model of the loss of information leading to crowding.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here