Analysis of Adult Neural Retina Extracellular Vesicle Release, RNA Transport and Proteomic Cargo
Author(s) -
Jason Mighty,
Jing Zhou,
Alberto BenitoMartín,
Sami Sauma,
Samer Hanna,
Onyekwere Onwumere,
Cui Shi,
Martin S. Muntzel,
Moira Sauane,
Michael J. Young,
Henrik Molina,
Dianne Cox,
Stephen Redenti
Publication year - 2020
Publication title -
investigative ophthalmology and visual science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.935
H-Index - 218
eISSN - 1552-5783
pISSN - 0146-0404
DOI - 10.1167/iovs.61.2.30
Subject(s) - extracellular vesicles , extracellular vesicle , microbiology and biotechnology , extracellular , vesicle , chemistry , retina , axoplasmic transport , rna , biophysics , neuroscience , microvesicles , biology , biochemistry , gene , microrna , membrane
Purpose Extracellular vesicles (EVs) contain RNA and protein cargo reflective of the genotype and phenotype of the releasing cell of origin. Adult neural retina EV release, RNA transfer, and proteomic cargo are the focus of this study. Methods Adult wild-type mouse retinae were cultured and released EV diameters and concentrations quantified using Nanosight. Immunogold transmission electron microscopy (TEM) was used to image EV ultrastructure and marker protein localization. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze retinal cell transcripts present in EVs. Super-resolution microscopy was used to image fluorescent (green) RNA and (red) lipid membrane labeled EVs, released by adult retina, and internalized by isolated retinal cells. Mass spectrometry was used to characterize the proteomes of adult retina and EVs. Results Adult neural retina released EVs at a rate of 1.42 +/− 0.08 × 10 8 /mL over 5 days, with diameters ranging from 30 to 910 nm. The canonical EV markers CD63 and Tsg101 localized to retinal EVs. Adult retinal and neuronal mRNA species present in both retina and EVs included rhodopsin and the neuronal nuclei marker NeuN. Fluorescently labeled RNA in retinal cells was enclosed in EVs, transported to, and uptaken by co-cultured adult retinal cells. Proteomic analysis revealed 1696 protein species detected only in retinal cells, 957 species shared between retina and EVs, and 82 detected only in EVs. Conclusions The adult neural retina constitutively releases EVs with molecular cargo capable of intercellular transport and predicted involvement in biological processes including retinal physiology, mRNA processing, and transcription regulation within the retinal microenvironment.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom