
Calculating Sensitivity, Specificity, and Predictive Values for Correlated Eye Data
Author(s) -
GuiShuang Ying,
Maureen G. Maguire,
Robert J. Glynn,
Bernard Rosner
Publication year - 2020
Publication title -
investigative ophthalmology and visual science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.935
H-Index - 218
eISSN - 1552-5783
pISSN - 0146-0404
DOI - 10.1167/iovs.61.11.29
Subject(s) - gee , medicine , generalized estimating equation , confidence interval , correlation , eye disease , retinopathy of prematurity , ophthalmology , eye examination , statistics , mathematics , visual acuity , gestational age , pregnancy , genetics , geometry , biology
Purpose To describe and demonstrate appropriate statistical approaches for estimating sensitivity, specificity, predictive values and their 95% confidence intervals (95% CI) for correlated eye data. Methods We described generalized estimating equations (GEE) and cluster bootstrap to account for inter-eye correlation and applied them for analyzing the data from a clinical study of telemedicine for the detection of retinopathy of prematurity (ROP). Results Among 100 infants (200 eyes) selected for analysis, 20 infants had referral-warranted ROP (RW-ROP) in both eyes and 9 infants with RW-ROP only in one eye based on clinical eye examination. In the per-eye analysis that included both eyes of an infant, the image evaluation for RW-ROP had sensitivity of 83.7% and specificity of 86.8%. The 95% CI's from the naïve approach that ignored the inter-eye correlation were narrower than those of the GEE approach and cluster bootstrap for both sensitivity (width of 95% CI: 22.4% vs. 23.2% vs. 23.9%) and specificity (11.4% vs. 12.5% vs. 11.6%). The 95% CIs for sensitivity and specificity calculated from left eyes and right eyes separately were wider (35.2% and 30.8% respectively for sensitivity, 25.4% and 17.3% respectively for specificity).Conclusions When an ocular test is performed in both eyes of some or all of the study subjects, the statistical analyses are best performed at the eye-level and account for the inter-eye correlation by using either the GEE or cluster bootstrap. Ignoring the inter-eye correlation results in 95% CIs that are inappropriately narrow and analyzing data from two eyes separately are not efficient.