
Carbon Nanodots Inhibit Oxidized Low Density Lipoprotein-Induced Injury and Monocyte Adhesion to Endothelial Cells Through Scavenging Reactive Oxygen Species
Author(s) -
Safeera Khan,
Jessica Chavez,
Xuewei Zhu,
Norman H. L. Chiu,
Wendi Zhang,
Ziyu Yin,
Jian Han,
Jin Ho Yang,
Robert E. Sigler,
Shaomin Tian,
Hong Zhu,
Yunbo Li,
Jianjun Wei,
Xin Yi,
Zhenquan Jia
Publication year - 2021
Publication title -
journal of biomedical nanotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.558
H-Index - 75
eISSN - 1550-7041
pISSN - 1550-7033
DOI - 10.1166/jbn.2021.3125
Subject(s) - reactive oxygen species , adhesion , endothelial dysfunction , monocyte , cytotoxicity , inflammation , oxidative stress , cell adhesion , lipoprotein , chemistry , microbiology and biotechnology , endothelial stem cell , biochemistry , immunology , biology , cholesterol , in vitro , endocrinology , organic chemistry
Oxidized low density lipoprotein (Ox-LDL) is a known biomarker of inflammation and atherosclerosis, a leading cause of death worldwide. As a new class of nanomaterials, carbon nanodots (CNDs) are widely used in bioimaging, diagnostics, and drug delivery. However, there is no current report on how these CNDs affect the cardiovascular system, particularly their potential in mediating endothelial inflammatory dysfunction. This study examined effects of CNDs on Ox-LDL-mediated endothelial dysfunction. CNDs significantly inhibited Ox-LDL-mediated adhesion of monocytes to human microvascular endothelial cells (HMEC-1), in human microvascular endothelial cells (HMEC-1). CNDs significantly inhibited Ox-LDL-mediated adhesion of monocytes to endothelial cells, which is an essential step in the development of atherosclerosis. Further, CNDs significantly inhibited OxLDL-induced expression of interleukin-8 (IL-8), a vital cytokine on monocyte adhesion to the endothelial cells. These results demonstrate CNDs possess anti-inflammatory properties. CNDs also protect cells against Ox-LDL-induced cytotoxicity. Electron paramagnetic resonance (EPR) spectroscopy studies demonstrated direct reactive oxygen species-scavenging by CNDs. This result indicates that the anti-inflammatory properties of CNDs are most likely due to their direct scavenging of reactive oxygen species. Animal studies involving mice did not show any morphological or physical changes between the CNDs and control groups. Our study provides evidence of potential of CNDs in reducing Ox-LDL-mediated inflammation and cytotoxicity in HMEC-1.