z-logo
open-access-imgOpen Access
Prolonged Cold Ischemia Induces Necroptotic Cell Death in Ischemia–Reperfusion Injury and Contributes to Primary Graft Dysfunction after Lung Transplantation
Author(s) -
Xingan Wang,
M. O’Brien,
Jie Yu,
Chenjie Xu,
Qiang Zhang,
Songjian Lu,
Lifan Liang,
Xiuli An,
John F. McDyer,
Rama K. Mallampalli
Publication year - 2019
Publication title -
american journal of respiratory cell and molecular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.469
H-Index - 161
eISSN - 1535-4989
pISSN - 1044-1549
DOI - 10.1165/rcmb.2018-0207oc
Subject(s) - lung transplantation , medicine , lung , necroptosis , ischemia , reperfusion injury , apoptosis , transplantation , infiltration (hvac) , programmed cell death , biology , physics , thermodynamics , biochemistry
Primary graft dysfunction (PGD) is a major cause of morbidity and mortality after lung transplantation. Ischemia-reperfusion injury (IRI) is a key event that contributes to PGD, though complex interactions affect donor lungs status, such as preceding brain death (BD), hemorrhagic shock (HS), and pre-engraftment lung management, the latter recognized as important risk factors for PGD. We hypothesized that a multi-hit isogenic mouse model of lung transplantation is more closely linked to PGD than IRI alone. Left lung transplants were performed between inbred C57BL/6 mice. A one-hit model of IRI was established by inducing cold ischemia (CI) of the donor lungs at 0°C for 1, 72, or 96 hours before engraftment. Multi-hit models were established by inducing 24 hours of HS and/or 3 hours of BD before 24 hours of CI. The recipients were killed at 24 hours after transplant and lung graft samples were analyzed. In the one-hit model of IRI, up to 72-hour CI time resulted in minimal cellular infiltration near small arteries after 24-hour reperfusion. Extension of CI time to 96 hours led to increased cellular infiltration and necroptotic pathway activation, without evidence of apoptosis, after 24-hour reperfusion. In a multi-hit model of PGD, "HS + BD + IRI" demonstrated increased lung injury, cellular infiltration, and activation of necroptotic and apoptotic pathways compared with IRI alone. Treatment with an inhibitor of receptor-interacting protein kinase 1 kinase, necrostatin-1, resulted in a significant decrease of downstream necroptotic pathway activation in both single- and multi-hit models of IRI. Thus, activation of necroptosis is a central event in IRI after prolonged CI, though it may not be sufficient to cause PGD alone. Pathological evaluation of donor lungs after CI-induced IRI, in conjunction with pre-engraftment donor lung factors in our multi-hit model, demonstrated early evidence of lung injury consistent with PGD. Our findings support the premise that pre-existing donor lung status is more important than CI time alone for inflammatory pathway activation in PGD, which may have important clinical implications for donor lung retrieval.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here