z-logo
open-access-imgOpen Access
Dissection of the Hyperadhesive Phenotype of Airway Eosinophils in Asthma
Author(s) -
Steven R. Barthel,
Nizar N. Jarjour,
Deane F. Mosher,
Mats W. Johansson
Publication year - 2006
Publication title -
american journal of respiratory cell and molecular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.469
H-Index - 161
eISSN - 1535-4989
pISSN - 1044-1549
DOI - 10.1165/rcmb.2006-0027oc
Subject(s) - phenotype , airway , asthma , medicine , immunology , pathology , biology , gene , surgery , genetics
Asthma is characterized by appearance of eosinophils in the airway. Eosinophils purified from the airway 48 h after segmental antigen challenge are described as exhibiting greater adhesion to albumin-coated surfaces via an unidentified beta2 integrin and increased expression of alphaMbeta2 (CD11b/18) compared with purified blood eosinophils. We have investigated the determinants of this hyperadhesive phenotype. Airway eosinophils exhibited increased reactivity with the CBRM1/5 anti-alphaM activation-sensitive antibody as well as enhanced adhesion to VCAM-1 (CD106) and diverse ligands, including albumin, ICAM-1 (CD54), fibrinogen, and vitronectin. Purified blood eosinophils did not adhere to the latter diverse ligands. Enhanced adhesion of airway eosinophils was blocked by anti-alphaMbeta2. Podosomes, structures implicated in cell movement and proteolysis of matrix proteins, were larger and more common on airway eosinophils adherent to VCAM-1 when compared with blood eosinophils. Incubation of blood eosinophils with IL-5 replicated the phenotype of airway eosinophils. That is, IL-5 enhanced recognition of alphaM by CBRM1/5; stimulated alphaMbeta2-mediated adhesion to VCAM-1, albumin, ICAM-1, fibrinogen, and vitronectin; and increased podosome formation on VCAM-1. Thus, the hyperadhesion of airway eosinophils after antigen challenge is mediated by upregulated and activated alphaMbeta2.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here