Normalizing the brain connectome for communication through synchronization
Author(s) -
Spase Petkoski,
Viktor Jirsa
Publication year - 2022
Publication title -
network neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.128
H-Index - 18
ISSN - 2472-1751
DOI - 10.1162/netn_a_00231
Subject(s) - connectome , synchronization (alternating current) , neuroscience , computer science , functional connectivity , psychology , computer network , channel (broadcasting)
Networks in neuroscience determine how brain function unfolds, and their perturbations lead to psychiatric disorders and brain disease. Brain networks are characterized by their connectomes, which comprise the totality of all connections, and are commonly described by graph theory. This approach is deeply rooted in a particle view of information processing, based on the quantification of informational bits such as firing rates. Oscillations and brain rhythms demand, however, a wave perspective of information processing based on synchronization. We extend traditional graph theory to a dual particle-wave perspective, integrate time delays due to finite transmission speeds, and derive a normalization of the connectome. When applied to the database of the Human Connectome Project, we explain the emergence of frequency-specific network cores including the visual and default mode networks. These findings are robust across human subjects (N = 100) and are a fundamental network property within the wave picture. The normalized connectome comprises the particle view in the limit of infinite transmission speeds and opens the applicability of graph theory to a wide range of novel network phenomena, including physiological and pathological brain rhythms. These two perspectives are orthogonal, but not incommensurable, when understood within the novel here proposed generalized framework of structural connectivity.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom