Probing Classifiers: Promises, Shortcomings, and Advances
Author(s) -
Yonatan Belinkov
Publication year - 2021
Publication title -
computational linguistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.314
H-Index - 98
eISSN - 1530-9312
pISSN - 0891-2017
DOI - 10.1162/coli_a_00422
Subject(s) - computer science , artificial intelligence , classifier (uml) , variety (cybernetics) , machine learning , property (philosophy) , artificial neural network , natural language processing , epistemology , philosophy
Probing classifiers have emerged as one of the prominent methodologies for interpreting and analyzing deep neural network models of natural language processing. The basic idea is simple—a classifier is trained to predict some linguistic property from a model’s representations—and has been used to examine a wide variety of models and properties. However, recent studies have demonstrated various methodological limitations of this approach. This squib critically reviews the probing classifiers framework, highlighting their promises, shortcomings, and advances.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom