z-logo
Premium
Approximate Life‐Cycle Assessment of Product Concepts Using Learning Systems
Author(s) -
Sousa Inês,
Wallace David,
Eisenhard Julie L.
Publication year - 2000
Publication title -
journal of industrial ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.377
H-Index - 102
eISSN - 1530-9290
pISSN - 1088-1980
DOI - 10.1162/10881980052541954
Subject(s) - life cycle assessment , product (mathematics) , computer science , artificial neural network , industrial ecology , environmental impact assessment , new product development , systems engineering , artificial intelligence , sustainability , engineering , production (economics) , mathematics , ecology , business , geometry , marketing , biology , economics , macroeconomics
Summary Parametric life‐cycle assessment (LCA) models have been integrated with traditional design tools and used to demonstrate the rapid elucidation of holistic, analytical trade‐offs among detailed design variations. A different approach is needed, however, if analytical environmental assessment is to be incorporated in very early design stages. During early stages, there may be competing product concepts with dramatic differences. Detailed information is scarce, and decisions must be made quickly. This article explores an approximate method for providing preliminary LCAs. In this method, learning algorithms trained using the known characteristics of existing products might allow environmental aspects of new product concepts to be approximated quickly during conceptual design without defining new models. Artificial neural networks are trained to generalize on product attributes, which are characteristics of product concepts, and environmental inventory data from pre‐existing LCAs. The product design team then queries the trained artificial model with new high‐level attributes to quickly obtain an impact assessment for a new product concept. Foundations for the learning system approach are established, and then an application within the distributed object‐based modeling environment (DOME) is provided. Tests have shown that it is possible to predict life‐cycle energy consumption, and that the method could be used to predict solid waste, greenhouse effect, ozone depletion, acidification, eutrophication, winter and summer smog.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here