z-logo
open-access-imgOpen Access
Impact of Different Electronic Cohort Definitions to Identify Patients With Atrial Fibrillation From the Electronic Medical Record
Author(s) -
Shah Rashmee U.,
Mukherjee Rebeka,
Zhang Yue,
Jones Aubrey E.,
Springer Jennifer,
Hackett Ian,
Steinberg Benjamin A.,
LloydJones Donald M.,
Chapman Wendy W.
Publication year - 2020
Publication title -
journal of the american heart association
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.494
H-Index - 85
ISSN - 2047-9980
DOI - 10.1161/jaha.119.014527
Subject(s) - medicine , cohort , atrial fibrillation , logistic regression , population , medical record , diagnosis code , cohort study , electronic medical record , emergency medicine , environmental health
Background Electronic medical records ( EMR s) allow identification of disease‐specific patient populations, but varying electronic cohort definitions could result in different populations. We compared the characteristics of an electronic medical record –derived atrial fibrillation ( AF ) patient population using 5 different electronic cohort definitions. Methods and Results Adult patients with at least 1 AF billing code from January 1, 2010, to December 31, 2017, were included. Based on different electronic cohort definitions, we trained 5 different logistic regression models using a labeled training data set (n=786). Each model yielded a predicted probability; patients were classified as having AF if the probability was higher than a specified cut point. Test characteristics were calculated for each model. These models were then applied to the full cohort and resulting characteristics were compared. In the training set, the comprehensive model (including demographics, billing codes, and natural language processing results) performed best, with an area under the curve of 0.89, sensitivity of 0.90, and specificity of 0.87. Among a candidate population (n=22 000), the proportion of patients identified as having AF varied from 61% in the model using diagnosis or procedure International Classification of Diseases ( ICD ) billing codes to 83% in the model using natural language processing of clinical notes. Among identified AF patients, the proportion of patients with a CHA 2 DS 2 ‐ VAS c score ≥2 varied from 69% to 85%; oral anticoagulant treatment rates varied from 50% to 66% depending on the model. Conclusions Different electronic cohort definitions result in substantially different AF study samples. This difference threatens the quality and reproducibility of electronic medical record–based research and quality initiatives.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here