z-logo
open-access-imgOpen Access
Inhibition of IκB Kinase at 24 Hours After Acute Kidney Injury Improves Recovery of Renal Function and Attenuates Fibrosis
Author(s) -
Johnson Florence L.,
Patel Nimesh S. A.,
Purvis Gareth S. D.,
Chiazza Fausto,
Chen Jianmin,
Sordi Regina,
Hache Guillaume,
Merezhko Viktoria V.,
Collino Massimo,
Yaqoob Muhammed M.,
Thiemermann Christoph
Publication year - 2017
Publication title -
journal of the american heart association
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.494
H-Index - 85
ISSN - 2047-9980
DOI - 10.1161/jaha.116.005092
Subject(s) - medicine , fibrosis , renal function , acute kidney injury , kidney disease , sirius red , creatinine , kidney , nephrectomy , ischemia , pathology
Background Acute kidney injury ( AKI ) is a major risk factor for the development of chronic kidney disease. Nuclear factor‐κB is a nuclear transcription factor activated post‐ischemia, responsible for the transcription of proinflammatory proteins. The role of nuclear factor‐κB in the renal fibrosis post‐ AKI is unknown. Methods and Results We used a rat model of AKI caused by unilateral nephrectomy plus contralateral ischemia (30 minutes) and reperfusion injury (up to 28 days) to show impairment of renal function (peak: 24 hours), activation of nuclear factor‐κB (peak: 48 hours), and fibrosis (28 days). In humans, AKI is diagnosed by a rise in serum creatinine. We have discovered that the IκB kinase inhibitor IKK 16 (even when given at peak serum creatinine) still improved functional and structural recovery and reduced myofibroblast formation, macrophage infiltration, transforming growth factor‐β expression, and Smad2/3 phosphorylation. AKI resulted in fibrosis within 28 days (Sirius red staining, expression of fibronectin), which was abolished by IKK 16. To confirm the efficacy of IKK 16 in a more severe model of fibrosis, animals were subject to 14 days of unilateral ureteral obstruction, resulting in tubulointerstitial fibrosis, myofibroblast formation, and macrophage infiltration, all of which were attenuated by IKK 16. Conclusions Inhibition of IκB kinase at peak creatinine improves functional recovery, reduces further injury, and prevents fibrosis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here