Open Access
Tollip Deficiency Alters Atherosclerosis and Steatosis by Disrupting Lipophagy
Author(s) -
Chen Keqiang,
Yuan Ruoxi,
Zhang Yao,
Geng Shuo,
Li Liwu
Publication year - 2017
Publication title -
journal of the american heart association
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.494
H-Index - 85
ISSN - 2047-9980
DOI - 10.1161/jaha.116.004078
Subject(s) - steatosis , inflammation , apolipoprotein e , endocrinology , medicine , apolipoprotein b , tumor necrosis factor alpha , immunology , biology , cholesterol , disease
Background Compromised lipophagy with unknown mechanisms may be critically involved in the intracellular accumulation of lipids, contributing to elevated atherosclerosis and liver steatosis. We hypothesize that toll‐interacting protein (Tollip), a key innate immune molecule involved in the fusion of autolysosome, may play a significant role in lipophagy and modulate lipid accumulation during the pathogenesis of atherosclerosis and liver steatosis. Methods and Results By comparing mice fed with either a Western high‐fat diet or a regular chow diet, we observed that both atherosclerosis and liver steatosis were aggravated in apolipoprotein E–deficient (ApoE −/− )/Tollip −/− mice as compared with ApoE −/− mice. Through electron microscopy analyses, we observed compromised fusion of lipid droplets with lysosomes within aortic macrophages as well as liver hepatocytes from ApoE −/− /Tollip −/− mice as compared with ApoE −/− mice. As a molecular indicator for disrupted lysosome fusion, the levels of p62 were significantly elevated in aortic and liver tissues from ApoE −/− /Tollip −/− mice. Molecules involved in facilitating lipophagy completion such as Ras‐related protein 7 and gamma‐aminobutyric acid receptor‐associated protein were reduced in ApoE −/− /Tollip −/− mice as compared with ApoE −/− mice. Intriguingly, ApoE −/− /Tollip −/− mice had reduced circulating levels of inflammatory cytokines such as tumor necrosis factor‐α and increased levels of transforming growth factor‐β. The reduced inflammation due to Tollip deficiency is consistent with a stable atherosclerotic plaque phenotype with increased levels of plaque collagen and smooth muscle cells in ApoE −/− /Tollip −/− mice. Conclusions Tollip deficiency selectively leads to enlarged yet stable atherosclerotic plaques, increased circulating lipids, liver steatosis, and reduced inflammation. Compromised lipophagy and reduced expression of inflammatory mediators due to Tollip deficiency may be the underlying causes. Our data suggest that lipid accumulation and inflammation may be intertwined yet independent processes during the progression of atherosclerosis and steatosis.