
Silicone dioxide nano-particles enhance toxicity of lead on oxidative and nitro-oxidative stress
Author(s) -
І. А. Bandas,
М. І. Кulitska,
Т. Ya. Yaroshenko,
М. М. Корда
Publication year - 2017
Publication title -
medična ì klìnìčna himiâ
Language(s) - English
Resource type - Journals
eISSN - 2414-9934
pISSN - 2410-681X
DOI - 10.11603/mcch.2410-681x.2017.v0.i3.8206
Subject(s) - oxidative stress , chemistry , lead acetate , toxicity , superoxide dismutase , antioxidant , catalase , thiobarbituric acid , glutathione , pharmacology , biochemistry , lipid peroxidation , medicine , organic chemistry , enzyme
. Nanoparticles are widely used in scientific research, industry and medicine. The established capability of nanoparticles to increase the transport of chemicals and drugs into cells and through the body barriers makes the possibility of potentiating the chemical contaminants toxicity in case of their simultaneous intake an urgent matter.The aim of the study – to learn the effect of silicon dioxide nanoparticles on the ability of chemical lead acetate toxicant to cause oxidative and nitro-oxidative stress in blood serum and liver of experimental rats.Research Methods. Experiments were conducted on 40 white outbred male rats, 150–160 g in weight, which were divided into 4 groups. Animals of the group (control) 1 were daily administered with saline solution intragastrically. The rats of the group 2 were administered with colloidal solution of silicon dioxide nanoparticles in a dose of 50 mg/kg of body weight. Animals of the group 3 were injected with lead acetate in aqueous solution in a dose of 20 mg/kg of body weight (expressed as lead), the group 4 – with solution of silicon dioxide nanoparticles with lead acetate daily during 3 weeks at the same doses. The total activity of NO-synthase, catalase, superoxide dismutase, NOx content, thiobarbituric acid reactive substances, oxidized modified proteins, reduced glutathione, ceruloplasmin and total serum antioxidant activity were determined in serum and liver. The obtained parameters were statistically processed.Results and Discussion. It was proved that silicon dioxide nanoparticles did not influence the studied parameters considerably. The administration of lead acetate to rats caused significant changes of all indices. However, the maximum changes of the parameters were evidenced in the group of animals in cases of simultaneous administration of silicon dioxide nanoparticles and lead acetate. In that case, the content of thiobarbituric acid reactive substances, NOx, oxidized modified proteins, reduced glutathione, and superoxide dismutase activity in blood serum and liver homogenate of rats varied significantly compared with the parameters of the group of animals that were administered with the chemical toxicant only.Conclusion. Silicon dioxide nanoparticles enhance the capability of the chemical lead acetate toxicant to cause oxidative and nitro-oxidative stress in blood serum and liver of the experimental rats.