z-logo
open-access-imgOpen Access
Two Level Clustering for Quality Improvement using Fuzzy Subtractive Clustering and Self-Organizing Map
Author(s) -
Erick Alfons Lisangan,
Aina Musdholifah,
Sri Hartati
Publication year - 2015
Publication title -
telkomnika: indonesian journal of electrical engineering/telkomnika
Language(s) - English
Resource type - Journals
eISSN - 2460-7673
pISSN - 2302-4046
DOI - 10.11591/tijee.v15i2.1552
Subject(s) - cluster analysis , silhouette , self organizing map , computer science , cluster (spacecraft) , single linkage clustering , fuzzy clustering , data mining , entropy (arrow of time) , pattern recognition (psychology) , artificial intelligence , cure data clustering algorithm , physics , quantum mechanics , programming language
Recently, clustering algorithms combined conventional methods and artificial intelligence. FSC-SOM is designed to handle the problem of SOM, such as defining the number of clusters and initial value of neuron weights. FSC find the number of clusters and the cluster centers which become the parameter of SOM. FSC-SOM is expected to improve the quality of FSC since the determination of the cluster centers are processed twice i.e. searching for data with high density at FSC then updating the cluster centers at SOM. FSC-SOM was tested using 10 datasets that is measured with F-Measure, entropy, Silhouette Index, and Dunn Index. The result showed that FSC-SOM can improve the cluster center of FSC with SOM in order to obtain the better quality of clustering results. The clustering result of FSC-SOM is better than or equal to the clustering result of FSC that proven by the value of external and internal validity measurement.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here