
Obstacle Avoidace Robot Using LabView
Author(s) -
Tasher Ali Sheikh,
Swacheta Dutta,
Smriti Baruah,
Pooja Sharma,
Sahadev Roy
Publication year - 2015
Publication title -
international journal of robotics and automation (ijra)/iaes international journal of robotics and automation
Language(s) - English
Resource type - Journals
eISSN - 2722-2586
pISSN - 2089-4856
DOI - 10.11591/ijra.v4i3.pp164-167
Subject(s) - obstacle , obstacle avoidance , robot , path (computing) , computer science , motion planning , robotics , artificial intelligence , collision avoidance , real time computing , simulation , mobile robot , collision , computer security , programming language , political science , law
The concept of path planning and collision avoidance are two of the most common theories applied for designing and developing in advanced autonomous robotics applications. NI LabView makes it possible to implement real-time processor for obstacle avoidance. The obstacle avoidance strategy ensures that the robot whenever senses the obstacle stops without being collided and moves freely when path is free, but sometimes there exists a probability that once the path is found free and the robot starts moving, then within a fraction of milliseconds, the robot again sense the obstacle and it stops. This continuous swing of stop and run within a very small period of time may cause heavy burden on the system leading to malfunctioning of the components of the system. This paper deals with overcoming this drawback in a way that even after the robot calculates the path is free then also it will wait for a specific amount of time before running it. So as to confirm that if again the sensor detects the obstacle within that specified period then robot don’t need to transit its state suddenly thus avoiding continuous transition of run and stop. Thus it reduces the heavy burden on the system.