
H7 three phase transformerless inverter for photovoltaic grid-tied system with maximum power point operation
Author(s) -
Essam Hendawi,
Sherif A. Zaid
Publication year - 2021
Publication title -
international journal of power electronics and drive systems/international journal of electrical and computer engineering
Language(s) - English
Resource type - Journals
eISSN - 2722-2578
pISSN - 2722-256X
DOI - 10.11591/ijpeds.v12.i3.pp1853-1861
Subject(s) - photovoltaic system , inverter , maximum power point tracking , total harmonic distortion , electrical engineering , grid tie inverter , grid connected photovoltaic power system , grid , three phase , inductance , computer science , electronic engineering , control theory (sociology) , engineering , voltage , control (management) , mathematics , geometry , artificial intelligence
One of the most important and common parts of the modern power systems is the grid-connected photovoltaic (PV) systems. Recently, these systems have gotten a big revolution due to the introduction of the transformerless inverters. It has the merits of small size, low cost, and high efficiency. However, transformerless inverters has a general safety problem related to the earth leakage current. Various researches were directed toward evolving their performance and diminishing the leakage current to the standard limits. This article proposes an application of the H7 controller to a PV powered grid-tied three phase transformerless inverter. The transformerless inverter is linked with the grid through a boost converter. The boost converter inductance is rearranged and divided to reduce the earth leakage current of the system. simulations are carried out for the proposed H7 PV grid-tied system and for a system that uses the conventional three phase inverter. The simulation results show that the H7 inverter provides lower leakage current, higher efficiency, and lower total harmonic distortion (THD) compared to the conventional three phase inverter.