z-logo
open-access-imgOpen Access
An efficient dynamic power management model for a stand-alone DC Microgrid using CPIHC technique
Author(s) -
N Sharmila,
K. R. Nataraj,
K. R. Rekha
Publication year - 2021
Publication title -
international journal of power electronics and drive systems/international journal of electrical and computer engineering
Language(s) - English
Resource type - Journals
eISSN - 2722-2578
pISSN - 2722-256X
DOI - 10.11591/ijpeds.v12.i3.pp1439-1449
Subject(s) - microgrid , voltage droop , control theory (sociology) , photovoltaic system , controller (irrigation) , energy storage , settling time , pid controller , power management , power (physics) , computer science , engineering , voltage , control engineering , voltage regulator , temperature control , step response , electrical engineering , control (management) , agronomy , physics , quantum mechanics , artificial intelligence , biology
The power generation using solar photovoltaic (PV) system in microgrid requires energy storage system due to their dilute and intermittent nature. The system requires efficient control techniques to ensure the reliable operation of the microgrid. This work presents dynamic power management using a decentralized approach. The control techniques in microgrid including droop controllers in cascade with proportional-integral (PI) controllers for voltage stability and power balance have few limitations. PI controllers alone will not ensure microgrid’s stability. Their parameters cannot be optimized for varying demand and have a slow transient response which increases the settling time. The droop controllers have lower efficiency. The load power variation and steady-state voltage error make the droop control ineffective. This paper presents a control scheme for dynamic power management by incorporating the combined PI and hysteresis controller (CPIHC) technique. The system becomes robust, performs well under varying demand conditions, and shows a faster dynamic response. The proposed DC microgrid has solar PV as an energy source, a lead-acid battery as the energy storage system, constant and dynamic loads. The simulation results show the proposed CPIHC technique efficiently manages the dynamic power, regulates DC link voltage and battery’s state of charge (SoC) compared to conventional combined PI and droop controller (CPIDC).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom